UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Prof Andrew Forge
UCL Ear Institute
332 Gray's Inn Rd
London
WC1X 8EE
Tel: 020 7679 8983
Fax: 020 7679 8990
Appointment
  • Emeritus Professor of Auditory Cell Biology
  • The Ear Institute
  • Faculty of Brain Sciences
 
 
Research Summary
The loss of the sensory hair cells from the cochlea (the hearing organ) is the major cause of deafness. Loss of the hair cells from vestibular system is a major contributor to balance dysfunction and the predominant underlying cause of falls in the elderly. The work in the laboratory aims at:

Understanding how hair cells die and the reasons for the progressive increase in hair cell loss once initiated, and identifying possible for pharmaceutical interventions to protect hair cells from lethal damage and/or prevent the progression of hair cell loss once initiated.

Characterising the process of repair of the cochlear and vestibular sensory epithelia when hair cells die; the cytoskeletal re-arrangements through which the non-sensory supporting cells that surround each hair cell close the lesions; and the subsequent molecular and cellular nature of the re-organisation of the sensory epithlelia that occurs following hair cell loss

Regeneration of hair cells and possible cell replacement strategies, including the use of progenitor cells derived from inner tissues and of stem cells

The maintenance of the inner ears environment that enables the proper functioning of hair cells and how that environment changes when hair cells die so that the likely ability of replacement hair cells to function properly can be assessed. A major part of this work involves investigations of intercellular communication via gap junctions, and the role of gap junctions and connexins in repair and recovery processes in the inner ear.

The work involves the use of whole animal models and organotypic cultures. Techniques have been developed for the maintenance of inner ear tissues of mammals, chickens and newts in culture. Hair cell regeneration occurs spontaneously in the inner ears of non-mammalian vertebrates; the examination of chicks and newts provides enables comparisons with the mammalian inner ear. We have also been able to maintain the vestibular sensory epithelia from humans in organotypic culture. The human tissue can be obtained from patients undergoing operations for acoustic neuromas and this presents the only opportunity to examine human inner ear tissues under experimental conditions. We are in the process of establishing a national consortium of surgeons who operate on such patients in order to obtain human vestibular material for our studies.


Please report any queries concerning the data shown on this page to:

https://www.ucl.ac.uk/hr/helpdesk/helpdesk_web_form.php
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by