Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Dr Adrian Jones
  • Reader in Petrology
  • Dept of Earth Sciences
  • Faculty of Maths & Physical Sciences
Research Summary

The Haskel Laboratory uses high pressure solid state multianvil presses to quantify materials and melting behaviour in the Earths mantle, and the transport of materials to sites of volcanic eruptions. We are particularly interested in the deep carbon cycle, - where C is stored and how it is entrained back to the surface in C-rich magmas like carbonatites and kimberlites (see ESF Eurocarb). Diamond provides the deepest known terrestrial samples and may have survived from the early stages of the Earth's history, including impact accretion and a magma ocean; it therefore provides a unique way to directly access a significant part of the Earths carbon inventory. We are part of the Mineral Ice and Rock Physics Laboratory, and share the same facilities with colleagues working on deformation. Systematic analysis of products from HP experiments is compared with natural diamond through microscopic analytical techniques both in the Earth Sciences and Chemistry Departments, including electron microprobe, laser ICPMS, IR and Raman spectroscopy and Xray diffraction.

The highest experimental pressures are achieved through shock during hypervelocity impacts, and these allow access to processes which include the ancient bombardment history of the early Earth. Materials behaviour during high shock pressure can be related to static experimental data through equations of state, when allowance is made for the unique loading and unloading conditions of impact experiments. A combined modelling and experimental approach links naturally to planetary geology and astrobiology. We collaborate with several experimental gun facilities, and our understanding of terrestrial materials has enabled us to parameterise the response of the lithosphere to large impact cratering, including potential for triggering volcanic activity.

Teaching Summary

GEOL1002 Petrology to Petrogenesis 

GEOL2010 Igneous Petrology 

GEOL3043/M043  Earth Resources and Sustainability

GEOLGG07/M021 Melting and Volcanism 

GEOLM003 Earth and Planetary Systems Science (Impact crater Fieldclass 50%)

Academic Background
1980 PhD Doctor of Philosophy – Geology University of Durham
1977 BSc Hons Bachelor of Science (Honours) – Geology University of Durham
Please report any queries concerning the data shown on this page to https://www.ucl.ac.uk/hr/helpdesk/helpdesk_web_form.php
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by