UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Prof Steve Hunt
Department of Cell & Developmental Biology, UCL
Gower Street
London
WC1E 6BT
Appointment
  • Professor of Molecular Neurobiology
  • Cell & Developmental Biology
  • Div of Biosciences
  • Faculty of Life Sciences
Research Groups
Research Summary

Everything we study is immensely important clinically and where there is often a large unmet need. To isolate molecules that could be targeted therapeutically in the control of drug relapse would be a major achievement and therapeutic advance. To understand the molecular pathology of depression or ADHD would similarly open many doors to future therapeutic interventions. The symptoms of pain arising from nerve injury, neuropathic pain, such as allodynia (touch evoked pain), spontaneous pain, hyperalgesia (enhanced pain following injury), and of course cancer pain are difficult to control with currently available drugs.  We study a number of closely related diseases: Drug addiction, affective disorders and pain mechanisms. At core these share the common problem of neural plasticity. For, while the nervous system is certainly plastic in its responses to the environment- it is not elastic. In other words the change in neural circuits that represent an attempt to compensate for drastic environmental change cannot easily be reset when kinder environmental pressures return. Genomics can be used to identify genes related to specific diseases. In the field of pain, depression, ADHD and addiction new targets could lead to better treatments. Our work has both provided a framework for understanding the underlying causes for these diseases, suggested mechanisms and provided a rational basis for some on-going pharmaceutical developments as well as suggesting new avenues of research. We were one of the very first groups to map the epigenetic changes that accompany pain and neuropathic pain states, identify a role for gene repression in nociception, describe local protein synthesis in some sensory afferents and emphasize the contribution of the brain in setting pain states. We have developed molecular gene knockout models that throw light on the inter-relationship between opiate control of pain and addiction and suggest a rational basis for understanding and extending new therapies for depression and ADHD. We pioneered the use of genetic screens for identifying genes that drive regeneration in the adult central and peripheral nervous system. We have recently been targeting pharmacologically and anatomically defined neuronal populations; a very powerful approach that has further advanced our understanding of addiction, relapse into drug taking and anxiety states. All of these advances have been published.

Teaching Summary

Organizer of 3rd year course 'Pain' C42. Graduate Tutor for CDB. Tutorial groups in Natural Sciences and Biomedical Sciences. Head of Department CDB.

Academic Background
1994 PhD Doctor of Philosophy – Anatomy, Physiology and Pathology not elsewhere classified University College London
1969 BSc Hons Bachelor of Science (Honours) – Zoology University of London
Please report any queries concerning the data shown on this page to https://www.ucl.ac.uk/hr/helpdesk/helpdesk_web_form.php
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by