UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Prof Trevor Smart
Medical Sciences Building
Gower Street
London
WC1E 6BT
Tel: 020 7679 3770
Fax: 020 7679 7298
Appointment
  • Schild Professor of Pharmacology
  • Neuro, Physiology & Pharmacology
  • Div of Biosciences
  • Faculty of Life Sciences
Research Themes
Research Summary
Controlling the innate excitability of neurons is vital for a healthy nervous system. There are various ways of achieving this aim, but by far the most important involves the inhibitory transmitter, GABA. Fast synaptic inhibition is achieved by rapid activation of GABA-A receptors whilst longer term modulatory effects on excitability are accomplished by GABA-B receptor activation. It is increasingly clear that there are many different isoforms of GABA-A receptors and these appear, in particular examples, to be targeted to discrete areas of the brain, and within single neurones, to discrete inhibitory synapses. Given the critical role(s) these receptors play in neuronal function, they form a logical target for therapeutic agents to ameliorate uncontrolled neuronal excitability, in addition to being involved in numerous neurological disorders, such as epilepsy and anxiety. Our research in neuroscience at UCL is supported by long-term programme grant funding from the Medical Research Council and the Wellcome Trust. We use multidisciplinary integrated approaches, based on electrophysiology, cell and molecular biology, imaging and neurogenetics, to elucidate the molecular and network properties of GABA receptors. These techniques, for network, whole-cell synaptic and single channel studies, are used in native neurones coupled with optical and genetic adaptations to modify the response profile of GABA-A receptors. To gain proof-of-principle for our manipulations of GABA-A receptor structure-function, we employ numerous DNA or RNA tranfection methods (allowing receptor expression in cells following viral infection, direct microinjection and lipofection). In addition, we are also using imaging/optical techniques, with various fluorophores and photoactivated caged compounds, to enable the tracking in live cells of receptor subunits in real time into and out of inhibitory synapses. At the synaptic and network levels, similar approaches are used to study the physiological control of inhibitory transmission and synaptic plasticity by retrograde and autocrine messengers. This also includes how other endogenous regulators in the nervous system (e.g., phosphorylation and neurosteroids) can modulate the function of specific GABA-A receptors at specific inhibitory synapses to affect network behaviour. Overall, our major objective is to provide a complete molecular description of the therapeutically important GABA receptor classes that will enable a deeper understanding of their role in neuronal networks in both healthy and diseased states.
Teaching Summary
Pharmacology lectures anbd tutorials
Medical tutorials
Academic Background
1983 PhD Doctor of Philosophy University of London
1977 B.Pharm Bachelor of Pharmacy School of Pharmacy, University of London
Please report any queries concerning the data shown on this page to:

https://www.ucl.ac.uk/hr/helpdesk/helpdesk_web_form.php
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by