UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Light-Activated Antimicrobial Polymers For Healthcare Applications
  • Publication Type:
    Thesis/Dissertation
  • Authors:
    Noimark SM
  • Pagination:
    i, 280
  • Supervisors:
    Parkin ,Kay CWM,Allan E
  • Status:
    Unpublished
  • Awarding institution:
    University College London
  • Language:
    English (U.K.)
  • Keywords:
    antimicrobial, infection control, nanoparticles, medical devices, photodynamic therapy
Abstract
This thesis details the development of potent light-activated antimicrobial silicone polymers for use in healthcare environments. Upon illumination, these polymers induce the lethal photosensitisation of bacteria through the generation of a range of reactive oxygen species at the polymer surface, initiating a non-site specific attack against bacteria in the vicinity. Activation of the antimicrobial technology developed was achieved using laser illumination (635 nm) and UVA illumination for medical device applications, or white hospital lighting conditions for hospital touch surface applications. Moreover, for the first time, some photobactericidal materials developed also demonstrated strong antimicrobial activity through an additional dark-activated mechanism. Antimicrobial polymers were developed through use of a swell-encapsulation-shrink strategy to incorporate photosensitiser dyes such as methylene blue and crystal violet, in addition to a range of nanoparticles including 2 nm gold nanoparticles, zinc oxide nanoparticles and titania nanoparticles, into medical grade silicone. Specifically, the photobactericidal silicone polymer systems detailed in this thesis are: (i) crystal violet-coated, methylene blue and 2 nm gold nanoparticle-encapsulated silicone for both medical device and hospital touch surface applications, (ii) crystal violet-coated, zinc oxide nanoparticle-encapsulated silicone for hospital touch surface applications and (iii) oleic acid-functionalised titania or gold-doped titania nanoparticle-encapsulated silicone for medical device or hospital touch surface applications (in combination with a suitable light delivery system). The materials were characterised using techniques including: light microscopy, fluorescence microscopy, transmission electron microscopy, UV-Vis absorbance spectroscopy, X-ray photoelectron spectroscopy, time-resolved electron paramagnetic resonance spectroscopy and time-resolved detection of near infrared singlet oxygen phosphorescence (∼ 1270 nm). Functional testing indicated that these materials were suitable for targeted applications and demonstrated strong material photostability and dye-polymer stability under aqueous conditions. The polymers demonstrated strong light-activated antimicrobial activity when tested against key Gram-positive and Gram-negative bacteria associated with hospital-acquired infections including Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli, with > 4 log reductions in viable bacterial numbers observed. Significant antimicrobial activity was also noted under dark conditions. It is anticipated that the potent antimicrobial technology detailed in this thesis could ultimately be used in both medical device and hospital touch surface applications, to reduce bacterial surface colonisation and the associated incidence of hospital-acquired infections.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Editor
Microbial Diseases
Editor
Structural & Molecular Biology
Author
Dept of Med Phys & Biomedical Eng
Editor
MAPS Faculty Office
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by