Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Ultrafast energy and momentum resolved dynamics of magnetic correlations in photo-doped Mott insulator Sr2IrO4
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Dean MPM, Cao Y, Liu X, Wall S, Zhu D, Mankowsky R, Thampy V, Chen XM, Vale JG, Casa D, Kim J, Said AH, Juhas P, Alonso-Mori R, Glownia JM, Robert A, Robinson J, Sikorski M, Song S, Kozina M, Lemke H, Patthey L, Owada S, Katayama T, Yabashi M, Tanaka Y, Togashi T, Liu J, Serrao CR, Kim BJ, Huber L, Chang CL, McMorrow DF, Först M, Hill JP
  • Publisher:
    Nature Publishing Group
  • Publication date:
  • Pagination:
    601, 605
  • Journal:
    Nature Materials
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
  • Language:
Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high TC superconductivity [1–4]. Recently, photoexcitation has been used to induce similarly exotic states transiently [5–7]. However, understanding how these states emerge has been limited because of a lack of available probes of magnetic correlations in the time domain, which hinders further investigation of how light can be used to control the properties of solids. Here we implement magnetic resonant inelastic X-ray scattering at a free electron laser, and directly determine the magnetization dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state 2 ps after the excitation has strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. The magnetism recovers its two-dimensional (2D) in-plane N´eel correlations on a timescale of a few ps, while the three-dimensional (3D) longrange magnetic order restores over a far longer, fluence-dependent timescale of a few hundred ps. The dramatic difference in these two timescales, implies that characterizing the dimensionality of magnetic correlations will be vital in our efforts to understand ultrafast magnetic dynamics.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
London Centre for Nanotechnology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by