UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Feynman Path Integrals Over Entangled States
Abstract
The saddle points of a conventional Feynman path integral are not entangled, since they comprise a sequence of classical field configurations. We combine insights from field theory and tensor networks by constructing a Feynman path integral over a sequence of matrix product states. The paths that dominate this path integral include some degree of entanglement. This new feature allows several insights and applications: i. A Ginzburg-Landau description of deconfined phase transitions. ii. The emergence of new classical collective variables in states that are not adiabatically continuous with product states. iii. Features that are captured in product-state field theories by proliferation of instantons are encoded in perturbative fluctuations about entangled saddles. We develop a general formalism for such path integrals and a couple of simple examples to illustrate their utility.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
London Centre for Nanotechnology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by