UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Prof Alison Hardcastle
Institute of Ophthalmology, UCL
11-43 Bath Street
London
EC1V 9EL
Appointment
  • Professor of Molecular Genetics
  • Inst Ophthalmology - Ocular Biology
  • Institute of Ophthalmology
  • Faculty of Brain Sciences
Research Themes
Research Summary

The complexity of genetic eye diseases is unprecedented. The research focus of our lab is inherited eye disease, from gene discovery to defining cellular function through to development of potential therapies. Our molecular genetic, functional and phenotypic studies have continually resulted in new discoveries that influence patient care. We have defined genetic mechanisms of disease and function of disease proteins in the retina, lens, cornea and developing eye, and have harnessed technological advances in next generation sequencing and stem cell biology to address our research questions. 

One of our specialties is X-linked forms of retinal degeneration. Some notable examples include identification of the cause of RP23 as a deep intronic mutation resulting in introduction of cryptic exon in a ciliopathy gene. We also described progressive cone dystrophy associated with a novel cone opsin misfolding mutation, and subsequently identified SNP haplotypes that result in splicing defects, leading to molecular understanding of cone opsin array mutational mechanisms and clinical outcome. 

In collaboration with Prof Mike Cheetham, we have defined the function of the X-linked retinitis pigmentosa protein RP2. Following on from our important functional studies, we have reprogrammed patient derived iPSCs into RPE cells, in collaboration with Prof Pete Coffey, and successfully shown that readthrough drugs can restore protein function and hence may be a viable treatment for patients with nonsense mutations. 

Applying a similar research pathway from genetic mechanism to cellular function, our studies have shown that X-linked cataract is allelic with Nance-Horan Syndrome (NHS), and we defined the function of NHS as a regulator of actin cytoskeletal dynamics and cell size. 

We were the first to describe identification of the X-linked megalocornea gene, with consequent effects on brain morphology, influencing our understanding of eye development. 

I have developed a successful research program on corneal dystrophies in collaboration with Mr Stephen Tuft, including complex and monogenic diseases, from gene discovery through to developing therapies. This includes a planned GWAS, RNA-seq and whole genome sequencing approach to study keratoconus, and to translate any significant associations into meaningful biological and pathological context.

Academic Background
  BSc Hons Bachelor of Science (Honours) – Biophysics North East London Polytechnic
  PhD Doctor of Philosophy – Human Molecular Genetics University of Newcastle upon Tyne
Please report any queries concerning the data shown on this page to https://www.ucl.ac.uk/hr/helpdesk/helpdesk_web_form.php
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by