UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Prof Ferruccio Renzoni
E10
Department of Physics and Astronomy
UCL - Gower Street
London
WC1E 6BT
Tel: 02076797019
Appointment
  • Professor of Physics
  • Dept of Physics & Astronomy
  • Faculty of Maths & Physical Sciences
Role
UCL Principal Supervisor,UCL Subsidiary Supervisor
Biography

Ferruccio Renzoni studied Physics at the University of Pisa (Italy) where he obtained his M.Sc. in 1993. He obtained his Ph.D. from the Technische Universitaet Graz (Austria) in 1998. He then spent two years in Germany, at the Institut fuer Laserphysik of the University of Hamburg, and three years in France, at the Laboratoire Kastler Brossel (Ecole Normale Superieure, Paris), where he obtained his "Habilitation a diriger des recherches". Since 2003 he has been at the Department of Physics and Astronomy of the University College London.

Research Summary

Ferruccio's current research interests include the study of nonlinear dynamics in driven systems and the development of novel imaging techniques. Current research projects are:

Magnetic Induction Tomography with Atomic Magnetometers

Magnetic induction tomography (MIT) is a non-contact and non-destructive electromagnetic imaging technique, that has potential applications in security, industry, medicine and geophysics. MIT principles rely on the establishment of eddy currents in a conductive object, and the detection of the magnetic field generated by these currents.

The ultimate performance of a magnetic induction tomography system depends on the magnetic field sensor used. Standard coil sensors show poor sensitivity at low frequency and low resolution. Ferruccio's team recently demonstrated that Magnetic Induction Tomography can be performed with atomic magnetometers, which have record sensitivity at low frequency and offer promise of extreme resolution. This paves the way to a wealth of new applications of magnetic imaging, from the medical to the security sectors.

[1] A. Wickenbrock, F. Tricot, and F. Renzoni, Magnetic induction measurements using an all-optical 87Rb atomic magnetometer, Appl. Phys. Lett. 103, 243503 (2013).

[2] A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, F. Renzoni, Magnetic induction tomography using an all-optical 87Rb atomic magnetometer, Opt. Lett. 39, 6367 (2014).

Sub-Fourier signal processing with non-linear systems

A linear system is able to distinguish two frequencies f1 and f2 in a time 2*pi/|f1-f2|. This is not necessarily true for nonlinear systems, which can distinguish frequencies in a time shorter than the Fourier limit. This is of interest for efficient information processing.

The project aims to understand the foundations of sub-Fourier signal processing, both theoretically and experimentally. Theoretical work already highlighted some important features of sub-Fourier resonances in non-linear systems [1]. These predictions are currently being experimentally tested with nonlinear quantum optical systems.

[1] D. Cubero, J. Casado-Pascual, and F. Renzoni, Irrationality and Quasiperiodicity in Driven Nonlinear Systems, Phys. Rev. Lett. 112, 174102 (2014).

Academic Background
2003   Habilitation Universite Pierre et Marie Curie (Paris VI)
1998   Doktorat Technische Universitat, Graz
1993   Laurea Universita degli Studi di Pisa
    Certificate in Learning and Teaching in HE Part 1 University College London
    Certificate in Learning and Teaching in HE Part 2 University College London
Please report any queries concerning the data shown on this page to https://www.ucl.ac.uk/hr/helpdesk/helpdesk_web_form.php
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by