Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Prof Mala Shah
UCL School of Pharmacy
29-39 Brunswick Square
  • Professor of Neuroscience
  • Pharmacology
  • UCL School of Pharmacy
  • Faculty of Life Sciences

Professor Mala Shah obtained a First Class (Hons) BSc in Pharmacology from the University of Bath, followed by a PhD at the Department of Pharmacology, University College London during which time she carried out work on characterising the slow afterhyperpolarization in hippocampal neurons. She subsequently won a Wellcome International Prize Travel Research Fellowship to work in Professor Daniel Johnston’s laboratory at Baylor College of Medicine (Texas, USA) where she started her work on understanding ion channel properties and function in entorhinal cortical dendrites under physiologic and epileptic conditions. In 2004, she returned to the Department of Pharmacology, University College London as a Senior Research Fellow in Professor David Brown’s laboratory and continued her studies on the functional significance of subcellular distribution of ion channels in hippocampal and cortical neurons during normal and epileptogenic conditions through funding received from the Wellcome Trust and Epilepsy Research Foundation. In 2007 she won the prestigious MRC New Investigator Award and joined the Pharmacology Department at UCL School of Pharmacy as a lecturer. In 2010, she obtained the esteemed ERC Starter Independent Grant.

Research Themes
Research Summary

The cortex and hippocampus are two key brain areas that play critical roles in normal functions such as learning and memory as well as disorders such as epilepsy. Our research interests lie in understanding how neurons within these brain areas process information under physiological conditions and during epileptogenesis. We are particularly interested in determining how voltage-gated ion channels regulate neuronal intrinsic excitability and synaptic transmission in cortical and hippocampal neurons. Specific projects include:

HCN channels and Epileptogenesis

The Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels are located in pyramidal neuron apical dendrites as well as a subset of synaptic terminals in the hippocampus and cortex. We have demonstrated that  HCN channel expression is significantly and persistently reduced following the onset of temporal lobe epilepsy in the adult entorhinal cortex. This loss of HCN channel function substantially enhances entorhinal cortical pyramidal neuron excitability. Since the entorhinal cortex plays a critical role in the generation and maintenance of seizure activity during temporal lobe epilepsy, the persistent decrease in HCN1 expression is likely to substantially contribute to the development of the disorder. We are, thus, currently investigating the molecular and cellular mechanisms by which a loss of HCN channels may lead to epileptogenesis.

Presynaptic HCN channels, Ca2+ channels and neuronal excitability

We have demonstrated that HCN channels are located at certain glutamatergic synaptic terminals in the adult entorhinal cortex inhibit synaptic release by restricting the activity of low threshold T-(CaV3.2) Ca2+ channels. Interestingly, the expression of pre- and post-synaptic HCN channels in the entorhinal cortex is differentially regulated. We are now using a combination of multi-photon imaging and electrophysiology to investigate which particular cortical neurons express pre-synaptic HCN channels and the cellular mechanisms that dictate which synapses may preferentially express these channels.

Function and Regulation of Axonal KV7 channels

Mutation in two types of KV7 subunits (KV7.2 and KV7.3) have been associated with Benign Familial Neonatal Convulsions (BFNC). Recent evidence shows that these KV7 subunits are targeted to the axon initial segments of hippocampal and cortical pyramidal neurons. KV7 mutations that cause BFNC impair axonal targeting of these channels. We have determined that the KV7 channels located at the axon initial segments of hippocampal pyramidal and granule cells regulate the action potential threshold and, thereby, neuronal firing. Interestingly, neurotransmitters such as acetylcholine cause long-term plasticity of these axonal KV7 channels. We are currently investigating the mechanisms by which neurotransmitters may regulate axonal KV7 channel activity and the impact of this on neuronal and network excitability.  

In addition to being present on axon initial segments, KV7 channels are also found on axon nodes of Ranvier and synaptic terminals. We are interested in understanding how these channels contribute to information processing within axons and synaptic release.

Teaching Summary

Prof. Shah is the Director of the Masters in Research (MRes) programme at UCL School of Pharmacy

Prof. Shah is also involved in undergraduate teaching in the Masters of Pharmacy (MPharm) course at UCL School of Pharmacy. She gives lectures and tutorials on basic neuroscience principles, neuroanatomy and neurological disorders to second year students. She co-organises a third year option module on 'The Ageing Brain and Neurodegeneration' in which she gives several lectures too. In addition, she supervises final year students and erasmus students undertaking their projects.

Academic Background
2000 PhD Doctor of Philosophy – Pharmacology University College London
1997 BSc Hons Bachelor of Science (Honours) – Pharmacology University of Bath
Please report any queries concerning the data shown on this page to https://www.ucl.ac.uk/hr/helpdesk/helpdesk_web_form.php
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by