Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Najman Y, Bickle M, BouDagher-Fadel M, Carter A, Garzanti E, Paul M, Wijbrans J, Willett E, Oliver G, Parrish R, Akhter SH, Allen R, Ando S, Chisty E, Reisberg L, Vezzoli G
  • Publication date:
  • Pagination:
    1, 14
  • Journal:
    Earth and Planetary Science Letters
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
A knowledge of Himalayan erosion history is critical to understanding crustal deformation processes, and the proposed link between the orogen's erosion and changes in both global climate and ocean geochemistry. The most commonly quoted age of India-Asia collision is ~ 50 Ma, yet the record of Paleogene Himalayan erosion is scant - either absent or of low age resolution. We apply biostratigraphic, petrographic, geochemical, isotopic and seismic techniques to Paleogene rocks of the Bengal Basin, Bangladesh, of previously disputed age and provenance. Our data show that the first major input of sands into the basin, in the > 1 km thick deltaic Barail Formation, occurred at 38 Ma. Our biostratigraphic and isotopic mineral ages date the Barail Formation as spanning late Eocene to early Miocene and the provenance data are consistent with its derivation from the Himalaya, but inconsistent with Indian cratonic or Burman margin sources. Detrital mineral lag times show that exhumation of the orogen was rapid by 38 Ma. The identification of sediments shed from the rapidly exhuming southern flanks of the eastern-central Himalaya at 38 Ma, provides a well dated accessible sediment record 17 Myr older than the previously described 21 Ma sediments, in the foreland basin in Nepal. Discovery of Himalayan detritus in the Bengal Basin from 38 Ma: 1) resolves the puzzling discrepancy between the lack of erosional evidence for Paleogene crustal thickening that is recorded in the hinterland; 2) invalidates those previously proposed evidences of diachronous collision which were based on the tenet that Himalayan-derived sediments were deposited earlier in the west than the east; 3) enables models of Himalayan exhumation (e.g. by mid crustal channel flow) to be revised to reflect vigorous erosion and rapid exhumation by 38 Ma, and 4) provides evidence that rapid erosion in the Himalaya was coincident with the marked rise in marine 87Sr/86Sr values since ~ 40 Ma. Whether 38 Ma represents the actual initial onset of vigorous erosion from the southern flanks of the east-central Himalaya, or whether older material was deposited elsewhere, remains an open question. © 2008 Elsevier B.V. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by