UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Incorporation of MRI-AIF Information for Improved Kinetic Modelling of Dynamic PET Data
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Sari H, Erlandsson K, Thielemans K, Atkinson D, Ourselin S, Arridge S, Hutton BF
  • Publication date:
    01/06/2015
  • Pagination:
    612, 618
  • Journal:
    IEEE Transactions on Nuclear Science
  • Volume:
    62
  • Issue:
    3
  • Status:
    Published
  • Print ISSN:
    0018-9499
Abstract
© 1963-2012 IEEE.In the analysis of dynamic PET data, compartmental kinetic analysis methods require an accurate knowledge of the arterial input function (AIF). Although arterial blood sampling is the gold standard of the methods used to measure the AIF, it is usually not preferred as it is an invasive method. An alternative method is the simultaneous estimation method (SIME), where physiological parameters and the AIF are estimated together, using information from different anatomical regions. Due to the large number of parameters to estimate in its optimisation, SIME is a computationally complex method and may sometimes fail to give accurate estimates. In this work, we try to improve SIME by utilising an input function derived from a simultaneously obtained DSC-MRI scan. With the assumption that the true value of one of the six parameter PET-AIF model can be derived from an MRI-AIF, the method is tested using simulated data. The results indicate that SIME can yield more robust results when the MRI information is included with a significant reduction in absolute bias of bf K estimates.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by