UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Stability, Structure and Scale: Improvements in Multi-modal Vessel Extraction for SEEG Trajectory Planning
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Zuluaga Valencia MA, Rodionov R, Nowell M, Achhala S, Zombori G, Mendelson AF, Cardoso MJ, Miserocchi A, McEvoy AW, Duncan JS, Ourselin S
  • Publisher:
    Springer Verlag
  • Publication date:
    09/03/2015
  • Journal:
    International Journal of Computer Assisted Radiology and Surgery
  • Status:
    Accepted
  • Print ISSN:
    1861-6410
Abstract
Purpose Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying signi cant associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer assisted planning systems that can optimise the safety pro le of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. Methods The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Results Twelve paired datasets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coe cient was 0.89 ± 0.04, representing a statistically signi cantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ±0.03). Conclusions Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Clinical & Experimental Epilepsy
Author
Institute of Neurology
Author
Dept of Med Phys & Biomedical Eng
Author
Clinical & Experimental Epilepsy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by