Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The semantics of BI and resource tableaux
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Galmiche D, Méry D, Pym D
  • Publication date:
  • Pagination:
    1033, 1088
  • Journal:
    Mathematical Structures in Computer Science
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
The logic of bunched implications, B I, provides a logical analysis of a basic notion of resource that is rich enough, for example, to form the logical basis for 'pointer logic' and 'separation logic' semantics for programs that manipulate mutable data structures. We develop a theory of semantic tableaux for B I, so providing an elegant basis for efficient theorem proving tools for BI. It is based on the use of an algebra of labels for BI's tableaux to solve the resource-distribution problem, the labels being the elements of resource models. For BI with inconsistency, ⊥, the challenge consists in dealing with BI's Grothendieck topological models within such a proof-search method, based on labels. We prove soundness and completeness theorems for a resource tableaux method TBI with respect to this semantics and provide a way to build countermodels from so-called dependency graphs. Then, from these results, we can define a new resource semantics of BI, based on partially defined monoids, and prove that this semantics is complete. Such a semantics, based on partiality, is closely related to the semantics of BI's (intuitionistic) pointer and separation logics. Returning to the tableaux calculus, we propose a new version with liberalised rules for which the countermodels are closely related to the topological Kripke semantics of BI. As consequences of the relationships between semantics of BI and resource tableaux, we prove two new strong results for propositional BI: its decidability and the finite model property with respect to topological semantics. © 2005 Cambridge University Press.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by