Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Higher Order Vagueness in Geographical Information: Empirical Geographical Population of Type n Fuzzy Sets
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Fisher P, Cheng T, Wood J
  • Publisher:
  • Publication date:
  • Pagination:
    311, 330
  • Journal:
  • Volume:
  • Issue:
  • Status:
  • Keywords:
    fuzzy sets, mountains, geomorphometry, type 2 fuzzy sets, vagueness, uncertainty
Fuzzy set theory has been suggested as a means for representing vague spatial phenomena, and is widely known for directly addressing some of the issues of vagueness such as the sorites paradox. Higher order vagueness is widely considered a necessary component of any theory of vagueness, but it is not so well known that it too is competently modelled by Type n Fuzzy sets. In this paper we explore the fuzzy representation of higher order vagueness with respect to spatial phenomena. Initially we relate the arguments on philosophical vagueness to Type n Fuzzy sets. As an example, we move on to an empirical generation of spatial Type 2 Fuzzy sets examining the spatial extent of mountain peaks in Scotland. We show that the Type 2 Fuzzy sets can be populated by using alternative parameterisations of a peak detection algorithm. Further ambiguities could also be explored using other parameters of this and other algorithms. We show some novel answers to interrogations of the mountain peaks of Scotland. The conclusion of this work is that higher order vagueness can be populated for Type 2 and higher fuzzy sets. It does not follow that it is always necessary to examine these higher order uncertainties, but a possible advantage in terms of the results of spatial inquiry is demonstrated.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by