Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Arginase activity is modulated by IL-4 and HOArg in nephritic glomeruli and mesangial cells
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Waddington SN, Tam FWK, Cook HT, Cattell V
  • Publication date:
  • Journal:
    American Journal of Physiology - Renal Physiology
  • Volume:
  • Issue:
    3 43-3
  • Status:
  • Print ISSN:
Arginase shares a common substrate, L-arginine, with nitric oxide synthase (NOS). Both enzymes are active at inflammatory sites. To understand regulation of arginase and its relationship to nitric oxide (NO) production, we studied effects of N(G)-hydroxy-L-arginine (HOArg) and interleukin-4 (IL- 4) on urea and NO / synthesis by glomeruli during rat immune glomerulonephritis and compared these with macrophages and glomerular mesangial cells (MC). In nephritic glomeruli, elicited macrophages, and MC stimulated with IL-1 and adenosine 3',5'-cyclic monophosphate agonists, increased arginase and induced NOS activity was found. Urea production was inhibited by HOArg and increased by IL-4. NO inhibition [N(G)-monomethyl-L- arginine (L-NMMA)] increased arginase activity in nephritic glomeruli and macrophages but not MC. NO / synthesis was inhibited by L-NMMA and IL-4. It was increased with HOArg under conditions of NO inhibition. In contrast, in normal glomeruli and basal MC, where there was no induced NO synthesis, IL-4 had no effect on arginase activity, whereas HOArg consistently reduced it in glomeruli only. Type II arginase (Arg II) mRNA was detected in normal glomeruli; nephritic glomeruli expressed both Arg I and Arg II mRNAs. This is the first demonstration of arginase modulation in glomeruli and MC and of the expression of arginase isoforms in glomeruli. The differential responses to two endogenous compounds generated by inflammation suggest this may be part of coordinated regulation of arginase and inducible NOS in immune injury, whereby arginase is inhibited during high-output NO production and stimulated with NO suppression. This, together with control of arginase and NOS isoforms, may be important in controlling the balance of inflammatory and repair mechanisms. 2 2 - -
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Maternal & Fetal Medicine
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by