UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Biomechanical properties of the Marfan's aortic root and ascending aorta before and after personalised external aortic root support surgery
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Singh SD, Xu XY, Pepper JR, Treasure T, Mohiaddin RH
  • Publication date:
    01/08/2015
  • Pagination:
    759, 766
  • Journal:
    Medical Engineering and Physics
  • Volume:
    37
  • Issue:
    8
  • Status:
    Published
  • Print ISSN:
    1350-4533
Abstract
Marfan syndrome is an inherited systemic connective tissue disease which may lead to aortic root disease causing dilatation, dissection and rupture of the aorta. The standard treatment is a major operation involving either an artificial valve and aorta or a complex valve repair. More recently, a personalised external aortic root support (PEARS) has been used to strengthen the aorta at an earlier stage of the disease avoiding risk of both rupture and major surgery. The aim of this study was to compare the stress and strain fields of the Marfan aortic root and ascending aorta before and after insertion of PEARS in order to understand its biomechanical implications. Finite element (FE) models were developed using patient-specific aortic geometries reconstructed from pre and post-PEARS magnetic resonance images in three Marfan patients. For the post-PEARS model, two scenarios were investigated-a bilayer model where PEARS and the aortic wall were treated as separate layers, and a single-layer model where PEARS was incorporated into the aortic wall. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients' pulse pressure was applied.Results from our FE models with patient-specific geometries show that peak aortic stresses and displacements before PEARS were located at the sinuses of Valsalva but following PEARS surgery, these peak values were shifted to the aortic arch, particularly at the interface between the supported and unsupported aorta. Further studies are required to assess the statistical significance of these findings and how PEARS compares with the standard treatment.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical Operational Research Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by