UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A genetic graph-based clustering algorithm
  • Publication Type:
    Conference
  • Authors:
    Menéndez H, Camacho D
  • Publication date:
    20/08/2012
  • Pagination:
    216, 225
  • Published proceedings:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
    7435 LNCS
  • ISBN-13:
    9783642326387
  • Status:
    Published
  • Print ISSN:
    0302-9743
Abstract
The interest in the analysis and study of clustering techniques have grown since the introduction of new algorithms based on the continuity of the data, where problems related to image segmentation and tracking, amongst others, makes difficult the correct classification of data into their appropriate groups, or clusters. Some new techniques, such as Spectral Clustering (SC), uses graph theory to generate the clusters through the spectrum of the graph created by a similarity function applied to the elements of the database. The approach taken by SC allows to handle the problem of data continuity though the graph representation. Based on this idea, this study uses genetic algorithms to select the groups using the same similarity graph built by the Spectral Clustering method. The main contribution is to create a new algorithm which improves the robustness of the Spectral Clustering algorithm reducing the dependency of the similarity metric parameters that currently affects to the performance of SC approaches. This algorithm, named Genetic Graph-based Clustering (GGC), has been tested with different synthetic and real-world datasets, the experimental results have been compared against classical clustering algorithms like K-Means, EM and SC. © 2012 Springer-Verlag.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by