UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An Empirical Study of Meta-and Hyper-Heuristic Search for Multi-Objective Release Planning
Abstract
A variety of meta-heuristic search algorithms have been introduced for optimising software release planning. However, there has been no comprehensive empirical study of different search algorithms across multiple different real world datasets. In this paper we present an empirical study of global, local and hybrid meta- and hyper-heuristic search based algorithms on 10 real world datasets. We find that the hyper-heuristics are particularly effective. For example, the hyper-heuristic genetic algorithm significantly outperformed the other six approaches (and with high effect size) for solution quality 85% of the time, and was also faster than all others 70% of the time. Furthermore, correlation analysis reveals that it scales well as the number of requirements increases.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by