UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Rapid Delaunay triangulation for randomly distributed point cloud data using adaptive Hilbert curve
Abstract
© 2015 Elsevier Ltd. Abstract Given the enormous scale and diverse distribution of 2D point cloud data, an adaptive Hilbert curve insertion algorithm which has quasi-linear time complexity is proposed to improve the efficiency of Delaunay triangulation. First of all, a large number of conflicting elongated triangles, which have been created and deleted many times, can be reduced by adopting Hilbert curve traversing multi-grids. In addition, searching steps for point location can be reduced by adjusting Hilbert curves opening direction in adjacent grids to avoid the "jumping" phenomenon. Lastly, the number of conflicting elongated triangles can be further decreased by adding control points during traversing grids. The experimental results show that the efficiency of Delaunay triangulation by the adaptive Hilbert curve insertion algorithm can be improved significantly for both uniformly and non-uniformly distributed point cloud data, compared with CGAL, regular grid insertion and multi-grid insertion algorithms.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by