UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Quantification of blood flow from rotational angiography
  • Publication Type:
    Conference
  • Authors:
    Waechter I, Bredno J, Barratt DC, Weese J, Hawkes DJ
  • Publication date:
    01/12/2007
  • Pagination:
    634, 641
  • Published proceedings:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
    4791 LNCS
  • Issue:
    PART 1
  • ISBN-13:
    9783540757566
  • Status:
    Published
  • Print ISSN:
    0302-9743
Abstract
For assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) information on vessel morphology and hemodynamics. Rotational angiography is routinely used to determine the 3D geometry and we propose a method to exploit the same acquisition to determine the blood flow waveform and the mean volumetric flow rate. The method uses a model of contrast agent dispersion to determine the flow parameters from the spatial and temporal development of the contrast agent concentration, represented by a flow map. Furthermore, it also overcomes artifacts due to the rotation of the c-arm using a newly introduced reliability map. The method was validated on images from a computer simulation and from a phantom experiment. With a mean error of 11.0% for the mean volumetric flow rate and 15.3% for the blood flow waveform from the phantom experiments, we conclude that the method has the potential to give quantitative estimates of blood flow parameters during cerebrovascular interventions. © Springer-Verlag Berlin Heidelberg 2007.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by