UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Cappiello G, Das S, Mazomenos EB, Maharatna K, Koulaouzidis G, Morgan J, Puddu PE
  • Publication date:
    01/01/2015
  • Pagination:
    107, 131
  • Journal:
    Physiological Measurement
  • Volume:
    36
  • Issue:
    1
  • Status:
    Published
  • Print ISSN:
    0967-3334
Abstract
© 2015 Institute of Physics and Engineering in Medicine. In this paper, we propose a novel statistical index for the early diagnosis of ventricular arrhythmia (VA) using the time delay phase-space reconstruction (PSR) technique, from the electrocardiogram (ECG) signal. Patients with two classes of fatal VA - with preceding ventricular premature beats (VPBs) and with no VPBs - have been analysed using extensive simulations. Three subclasses of VA with VPBs viz. ventricular tachycardia (VT), ventricular fibrillation (VF) and VT followed by VF are analyzed using the p roposed technique. Measures of descriptive statistics like mean (μ), standard deviation (σ), coefficient of variation (CV = σ/μ), skewness (γ) and kurtosis (β) in phase-space diagrams are studied for a sliding window of 10 beats of the ECG signal using the box-counting technique. Subsequently, a hybrid prediction index which is composed of a weighted sum of CV and kurtosis has been proposed for predicting the impending arrhythmia before its actual occurrence. The early diagnosis involves crossing the upper bound of a hybrid index which is capable of predicting an impending arrhythmia 356 ECG beats, on average (with 192 beats standard deviation) before its onset when tested with 32 VA patients (both with and without VPBs). The early diagnosis result is also verified using a leave one out cross-validation (LOOCV) scheme with 96.88% sensitivity, 100% specificity and 98.44% accuracy.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by