Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A two-way time of flight ranging scheme for wireless sensor networks
  • Publication Type:
  • Authors:
    Mazomenos EB, De Jager D, Reeve JS, White NM
  • Publication date:
  • Pagination:
    163, 178
  • Published proceedings:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
    6567 LNCS
  • ISBN-13:
  • Status:
  • Print ISSN:
Relative ranging between Wireless Sensor Network (WSN) nodes is considered to be an important requirement for a number of distributed applications. This paper focuses on a two-way, time of flight (ToF) technique which achieves good accuracy in estimating the point-to-point distance between two wireless nodes. The underlying idea is to utilize a two-way time transfer approach in order to avoid the need for clock synchronization between the participating wireless nodes. Moreover, by employing multiple ToF measurements, sub-clock resolution is achieved. A calibration stage is used to estimate the various delays that occur during a message exchange and require subtraction from the initial timed value. The calculation of the range between the nodes takes place on-node making the proposed scheme suitable for distributed systems. Care has been taken to exclude the erroneous readings from the set of measurements that are used in the estimation of the desired range. The two-way ToF technique has been implemented on commercial off-the-self (COTS) devices without the need for additional hardware. The system has been deployed in various experimental locations both indoors and outdoors and the obtained results reveal that accuracy between 1 m RMS and 2.5 m RMS in line-of-sight conditions over a 42 m range can be achieved. © 2011 Springer-Verlag.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by