UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
On the effect of aqueous Ca on magnesite growth - Insight into trace element inhibition of carbonate mineral precipitation
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Berninger UN, Jordan G, Lindner M, Reul A, Schott J, Oelkers EH
  • Publication date:
    30/01/2016
  • Pagination:
    195, 209
  • Journal:
    Geochimica et Cosmochimica Acta
  • Volume:
    178
  • Status:
    Published
  • Print ISSN:
    0016-7037
Abstract
© 2016 Elsevier Ltd.Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100 °C and pH ~7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4 ± 3 nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86-117. These rates do not vary systematically with aqueous Ca concentration up to 3 × 10-3 mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8 mol percent of Ca2+ into the growing magnesite structure.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by