UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Context-specific reweighting of auditory spatial cues following altered experience during development.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Keating P, Dahmen JC, King AJ
  • Publication date:
    22/07/2013
  • Pagination:
    1291, 1299
  • Journal:
    Curr Biol
  • Volume:
    23
  • Issue:
    14
  • Status:
    Published
  • Country:
    England
  • PII:
    S0960-9822(13)00640-4
  • Language:
    eng
  • Keywords:
    Acoustic Stimulation, Animals, Auditory Cortex, Cues, Ferrets, Hearing, Neuronal Plasticity, Sound Localization
Abstract
BACKGROUND: Neural systems must weight and integrate different sensory cues in order to make decisions. However, environmental conditions often change over time, altering the reliability of different cues and therefore the optimal way for combining them. To explore how cue integration develops in dynamic environments, we examined the effects on auditory spatial processing of rearing ferrets with localization cues that were modified via a unilateral earplug, interspersed with brief periods of normal hearing. RESULTS: In contrast with control animals, which rely primarily on timing and intensity differences between their two ears to localize sound sources, the juvenile-plugged ferrets developed the ability to localize sounds accurately by relying more on the unchanged spectral localization cues provided by the single normal ear. This adaptive process was paralleled by changes in neuronal responses in the primary auditory cortex, which became relatively more sensitive to these monaural spatial cues. Our behavioral and physiological data demonstrated, however, that the reweighting of different spatial cues disappeared as soon as normal hearing was experienced, showing for the first time that this type of plasticity can be context specific. CONCLUSIONS: These results show that developmental changes can be selectively expressed in response to specific acoustic conditions. In this way, the auditory system can develop and simultaneously maintain two distinct models of auditory space and switch between these models depending on the prevailing sensory context. This ability is likely to be critical for maintaining accurate perception in dynamic environments and may point toward novel therapeutic strategies for individuals who experience sensory deficits during development.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
The Ear Institute
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by