UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Topical delivery of hexamidine
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Lane M, Hadgraft J, Parisi, N , Paz-Alvarez M, Lever R, Matts P
  • Publisher:
    Elsevier
  • Publication date:
    15/06/2016
  • Pagination:
    332, 339
  • Journal:
    International Journal of Pharmaceutics
  • Volume:
    506
  • Issue:
    1 - 2
  • Print ISSN:
    1873-3476
  • Keywords:
    Hexamidine, skin, formulation, solvents, chemical penetration enhancers
Abstract
Hexamidine diisethionate (HEX D) has been used for its biocidal actions in topical preparations since the 1950s. Recent data also suggest that it plays a beneficial role in skin homeostasis. To date, the extent to which this compound penetrates the epidermis has not been reported nor how its topical delivery may be modulated. In the present work we set out to characterise the interaction of HEX D with the skin and to develop a range of simple formulations for topical targeting of the active. A further objective was to compare the skin penetration of HEX D with its corresponding dihydrochloride salt (HEX H) as the latter has more favourable physicochemical properties for skin uptake. Candidate vehicles were evaluated by in vitro Franz cell permeation studies using porcine skin. Initially, neat solvents were investigated and subsequently binary systems were examined. The solvents and chemical penetration enhancers investigated included glycerol, dimethyl isosorbide (DMI), isopropyl alcohol (IPA), 1,2-pentanol (1,2-PENT), polyethylene glycol (PEG) 200, propylene glycol (PG), propylene glycol monolaurate (PGML) and TranscutolĀ®P (TC). Of a total of 30 binary solvent systems evaluated only 10 delivered higher amounts of active into the skin compared with the neat solvents. In terms of topical efficacy, formulations containing PGML far surpassed all other solvents or binary combinations. More than 70% of HEX H was extracted from the skin following application in PG:PGML (50:50). Interestingly, the same vehicle effectively promoted skin penetration of HEX D but demonstrated significantly lower uptake into and through the skin (30%). The findings confirm the unpredictable nature of excipients on delivery of actives with reference to skin even where there are minor differences in molecular structures. We also believe that they underline the ongoing necessity for fundamental studies on the interaction of topical excipients with the skin.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
UCL School of Pharmacy
Author
Pharmaceutics
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by