Please report any queries concerning the funding data grouped in the
sections named
"Externally Awarded"
or
"Internally Disbursed"
(shown on the profile page) to your Research Finance Administrator.
Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php
by entering your department
Please report any queries concerning the student data shown on the
profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Sequestration of carbon in the deep Atlantic during the last glaciation
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Yu J, Menviel L, Jin ZD, Thornalley DJR, Barker S, Marino G, Rohling EJ, Cai Y, Zhang F, Wang X, Dai Y, Chen P, Broecker WS
-
Publication date:08/02/2016
-
Pagination:319, 324
-
Journal:Nature Geoscience
-
Volume:9
-
Issue:4
-
Status:Published
-
Print ISSN:1752-0894
-
Full Text URL:
Abstract
© 2016 Macmillan Publishers Limited. All rights reserved.Atmospheric CO2 concentrations declined markedly about 70,000 years ago, when the Earth's climate descended into the last glaciation. Much of the carbon removed from the atmosphere has been suspected to have entered the deep oceans, but evidence for increased carbon storage remains elusive. Here we use the B/Ca ratios of benthic foraminifera from several sites across the Atlantic Ocean to reconstruct changes in the carbonate ion concentration and hence the carbon inventory of the deep Atlantic across this transition. We find that deep Atlantic carbonate ion concentration declined by around 25 μmol kg-1 between ∼80,000 and 65,000 years ago. This drop implies that the deep Atlantic carbon inventory increased by at least 50 Gt around the same time as the amount of atmospheric carbon dropped by about 60 Gt. From a comparison with proxy records of deep circulation and climate model simulations, we infer that the carbon sequestration coincided with a shoaling of the Atlantic meridional overturning circulation. We thus conclude that changes in the Atlantic Ocean circulation may have played an important role in reductions of atmospheric CO2 concentrations during the last glaciation, by increasing the carbon storage in the deep Atlantic.
› More
search options
UCL Researchers