Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Slic-Seg: A Minimally Interactive Segmentation of the Placenta from Sparse and Motion-Corrupted Fetal MRI in Multiple Views
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Wang G, Zuluaga M, Pratt R, Aertsen M, Doel T, Klusmann M, David A, Deprest J, Vercauteren T, Ourselin S
  • Publisher:
  • Publication date:
  • Journal:
    Medical Image Analysis
  • Print ISSN:
  • Keywords:
    Fetal MRI, Interactive Method, Co-segmentation, Graph Cuts, Random Forests
Segmentation of the placenta from fetal MRI is challenging due to sparse acquisition, inter-slice motion, and the widely varying position and shape of the placenta between pregnant women. We propose a minimally interactive framework that combines multiple volumes acquired in different views to obtain accurate segmentation of the placenta. In the first phase, a minimally interactive slice-by-slice propagation method called Slic-Seg is used to obtain an initial segmentation from a single motion-corrupted sparse volume image. It combines high-level features, online Random Forests and Conditional Random Fields, and only needs user interactions in a single slice. In the second phase, to take advantage of the complementary resolution in multiple volumes acquired in different views, we further propose a probability-based 4D Graph Cuts method to refine the initial segmentations using inter-slice and inter-image consistency. We used our minimally interactive framework to examine the placentas of 16 mid-gestation patients from MRI acquired in axial and sagittal views respectively. The results show the proposed method has 1) a good performance even in cases where sparse scribbles provided by the user lead to poor results with the competitive propagation approaches; 2) a good interactivity with low intra- and inter-operator variability; 3) higher accuracy than state-of-the-art interactive segmentation methods; and 4) an improved accuracy due to the co-segmentation based refinement, which outperforms single volume or intensity-based Graph Cuts.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Maternal & Fetal Medicine
Dept of Med Phys & Biomedical Eng
Dept of Med Phys & Biomedical Eng
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by