UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Actin kinetics shapes cortical network structure and mechanics.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Fritzsche M, Erlenkämper C, Moeendarbary E, Charras G, Kruse K
  • Publication date:
    22/04/2016
  • Pagination:
    e1501337
  • Journal:
    Science advances
  • Volume:
    2
  • Issue:
    4
  • Medium:
    Electronic-eCollection
  • Language:
    eng
  • Addresses:
    MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
Abstract
The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
London Centre for Nanotechnology
Author
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by