Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Monitoring the growth of an orthotopic tumour xenograft model: Multi-Modal imaging assessment with benchtop MRI (1T), high-Field MRI (9.4T), ultrasound and bioluminescence
© 2016 Ramasawmy et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background Research using orthotopic and transgenic models of cancer requires imaging methods to non-invasively quantify tumour burden. As the choice of appropriate imaging modality is wide-ranging, this study aimed to compare low-field (1T) magnetic resonance imaging (MRI), a novel and relatively low-cost system, against established preclinical techniques: bioluminescence imaging (BLI), ultrasound imaging (US), and high-field (9.4T) MRI. Methods A model of colorectal metastasis to the liver was established in eight mice, which were imaged with each modality over four weeks post-implantation. Tumour burden was assessed from manually segmented regions. Results All four imaging systems provided sufficient contrast to detect tumours in all of the mice after two weeks. No significant difference was detected between tumour doubling times estimated by low-field MRI, ultrasound imaging or high-field MRI. A strong correlation was measured between high-field MRI estimates of tumour burden and all the other modalities (p < 0.001, Pearson). Conclusion These results suggest that both low-field MRI and ultrasound imaging are accurate modalities for characterising the growth of preclinical tumour models.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by