UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Scalco RS, Gardiner AR, Pitceathly RD, Hilton-Jones D, Schapira AH, Turner C, Parton M, Desikan M, Barresi R, Marsh J, Manzur AY, Childs AM, Feng L, Murphy E, Lamont PJ, Ravenscroft G, Wallefeld W, Davis MR, Laing NG, Holton JL, Fialho D, Bushby K, Hanna MG, Phadke R, Jungbluth H, Houlden H, Quinlivan R
  • Publication date:
    11/05/2016
  • Pagination:
    504, 510
  • Journal:
    Neuromuscular disorders : NMD
  • Volume:
    26
  • Issue:
    8
  • Medium:
    Print-Electronic
  • Print ISSN:
    0960-8966
  • Language:
    eng
  • Addresses:
    MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; CAPES Foundation, Ministry of Education of Brazil, Brasilia DF, Brazil. Electronic address: r.scalco@ucl.ac.uk.
Abstract
Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Department of Neuromuscular Diseases
Author
Clinical and Movement Neurosciences
Author
Department of Neuromuscular Diseases
Author
UCL Queen Square Institute of Neurology
Author
Department of Neuromuscular Diseases
Author
Department of Neuromuscular Diseases
Author
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by