Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Observation and mechanistic characteristic of a direct ultrasonic neurostimulation effect in peripheral nerves
  • Publication Type:
  • Authors:
    Wright CJ
  • Date awarded:
  • Pagination:
  • Supervisors:
    Saffari N,Rothwell J
  • Status:
  • Awarding institution:
  • Language:
  • Date Submitted:
Appreciation for the medical and research potential of ultrasound neuromodulation is growing rapidly, with potential applications in non-invasive treatment of neuro-degenerative disease and functional brain mapping spurring recent progress. A full understanding of the mechanical interaction of sound waves and neural tissue could allow tailor-made stimuli to produce different effects or specifically stimulate separate tissue types, adding great value to an already promising technique. Despite this worthy goal, little progress has been made in our understanding of the nature of the ultrasound-tissue interaction. The current study forms part of a long term goal to tackle this issue by isolating and characterising the effects of, and sensitivity to ultrasound for all the different structures found in nervous tissue. A simple, well characterised model of nervous transmission is therefore used along with a tightly controlled acoustic environment so that the characteristics of direct US stimulation effects can be investigated. Experiments are performed that demonstrate the capability of ultrasound to directly stimulate unmyelinted peripheral axons, characterise the stimulus response dynamics and determine the responsible ultrasonic force mechanism. A PCD, unimpeded ultrasound path and wavelet acoustic analysis techniques are used to detect different modes of cavitation with high sensitivity which are then tested for correlation to nerve responses. In the present case, direct ultrasound stimulation of peripheral axonal tissue is found to require either stable or inertial cavitation. The lowest intensity at which stimulation is observed is 25 W/cm2, similar to previous neuromodulatory thresholds found in peripheral nerves. This study therefore represents a significant advance in our understanding of the mechanisms behind the ultrasound neurostimulation phenomenon.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Clinical and Movement Neurosciences
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by