UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Optimised multi-camera systems for dimensional control in factory environments
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Robson S, MacDonald L, Kyle S, Boehm J, Shortis M
  • Publication date:
    01/08/2018
  • Pagination:
    1707, 1718
  • Journal:
    Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  • Volume:
    232
  • Issue:
    10
  • Status:
    Published
  • Print ISSN:
    0954-4054
Abstract
© IMechE 2016. As part of the United Kingdom’s Light Controlled Factory project, University College London aims to develop a large-scale multi-camera system for dimensional control tasks in manufacturing, such as part assembly and tracking. Accuracy requirements in manufacturing are demanding, and improvements in the modelling and analysis of both camera imaging and the measurement environment are essential. A major aspect to improved camera modelling is the use of monochromatic imaging of retro-reflective target points, together with a camera model designed for a particular illumination wavelength. A small-scale system for laboratory testing has been constructed using eight low-cost monochrome cameras with C-mount lenses on a rigid metal framework. Red, green and blue monochromatic light-emitting diode ring illumination has been tested, with a broadband white illumination for comparison. Potentially, accuracy may be further enhanced by the reduction in refraction errors caused by a non-homogeneous factory environment, typically manifest in varying temperatures in the workspace. A refraction modelling tool under development in the parallel European Union LUMINAR project is being used to simulate refraction in order to test methods which may be able to reduce or eliminate this effect in practice.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by