UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Natural variation in sensory-motor white matter organization influences manifestations of Huntington's disease.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Orth M, Gregory S, Scahill RI, Mayer IS, Minkova L, Klöppel S, Seunarine KK, Boyd L, Borowsky B, Reilmann R, Bernhard Landwehrmeyer G, Leavitt BR, Roos RA, Durr A, Rees G, Rothwell JC, Langbehn D, Tabrizi SJ
  • Publication date:
    01/08/2016
  • Journal:
    Human brain mapping
  • Medium:
    Print-Electronic
  • Print ISSN:
    1065-9471
  • Language:
    eng
  • Keywords:
    TRACK-On Investigators
  • Addresses:
    Department of Neurology, Ulm University Hospital, Ulm, Germany.
Abstract
While the HTT CAG-repeat expansion mutation causing Huntington's disease (HD) is highly correlated with the rate of pathogenesis leading to disease onset, considerable variance in age-at-onset remains unexplained. Therefore, other factors must influence the pathogenic process. We asked whether these factors were related to natural biological variation in the sensory-motor system. In 243 participants (96 premanifest and 35 manifest HD; 112 controls), sensory-motor structural MRI, tractography, resting-state fMRI, electrophysiology (including SEP amplitudes), motor score ratings, and grip force as sensory-motor performance were measured. Following individual modality analyses, we used principal component analysis (PCA) to identify patterns associated with sensory-motor performance, and manifest versus premanifest HD discrimination. We did not detect longitudinal differences over 12 months. PCA showed a pattern of loss of caudate, grey and white matter volume, cortical thickness in premotor and sensory cortex, and disturbed diffusivity in sensory-motor white matter tracts that was connected to CAG repeat length. Two further major principal components appeared in controls and HD individuals indicating that they represent natural biological variation unconnected to the HD mutation. One of these components did not influence HD while the other non-CAG-driven component of axial versus radial diffusivity contrast in white matter tracts were associated with sensory-motor performance and manifest HD. The first component reflects the expected CAG expansion effects on HD pathogenesis. One non-CAG-driven component reveals an independent influence on pathogenesis of biological variation in white matter tracts and merits further investigation to delineate the underlying mechanism and the potential it offers for disease modification. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Vice-Provost (Research, Innovation and Global Engagement)
Author
Clinical and Movement Neurosciences
Author
Neurodegenerative Diseases
Author
Neurodegenerative Diseases
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by