Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes.
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Garaud S, Taher TE, Debant M, Burgos M, Melayah S, Berthou C, Parikh K, Pers JO, Luque-Paz D, Chiocchia G, Peppelenbosch M, Isenberg DA, Youinou P, Mignen O, Renaudineau Y, Mageed RA
  • Publication date:
  • Journal:
    Cellular & molecular immunology
  • Medium:
  • Print ISSN:
  • Language:
  • Addresses:
    INSERM ERI29/EA2216, réseau epigenetique and réseau canaux ioniques du Cancéropôle Grand Ouest, Brest University Medical School, Brest 29609, France.
CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells in patients with chronic lymphocytic leukemia (CLL). Important functional properties are associated with CD5 expression in B cells, including signal transducer and activator of transcription 3 activation, IL-10 production and the promotion of B-lymphocyte survival and transformation. However, the pathway(s) by which CD5 influences the biology of B cells and its dependence on B-cell receptor (BCR) co-signaling remain unknown. In this study, we show that CD5 expression activates a number of important signaling pathways, including Erk1/2, leading to IL-10 production through a novel pathway independent of BCR engagement. This pathway is dependent on extracellular calcium (Ca(2+)) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) protein. We also show that Erk1/2 activation in a subgroup of CLL patients is associated with TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 production. These findings provide new insights into the role of CD5 in B-cell biology in health and disease and could pave the way for new treatment strategies for patients with B-CLL.Cellular & Molecular Immunology advance online publication, 8 August 2016; doi:10.1038/cmi.2016.42.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by