Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Clustering Mobile Apps Based on Mined Textual Features
  • Publication Type:
  • Authors:
    Al-Subaihin AA, Sarro F, Black S, Capra L, Harman M, Jia Y, Zhang Y
  • Publication date:
  • Published proceedings:
    International Symposium on Empirical Software Engineering and Measurement
  • Volume:
  • ISBN-13:
  • Status:
  • Print ISSN:
© 2016 ACM.Context: Categorising software systems according to their functionality yields many benefits to both users and developers. Goal: In order to uncover the latent clustering of mobile apps in app stores, we propose a novel technique that measures app similarity based on claimed behaviour. Method: Features are extracted using information retrieval augmented with ontological analysis and used as attributes to characterise apps. These attributes are then used to cluster the apps using agglomerative hierarchical clustering. We empirically evaluate our approach on 17,877 apps mined from the BlackBerry and Google app stores in 2014. Results: The results show that our approach dramatically improves the existing categorisation quality for both Blackberry (from 0.02 to 0.41 on average) and Google (from 0.03 to 0.21 on average) stores. We also find a strong Spearman rank correlation (ρ= 0.96 for Google and ρ= 0.99 for BlackBerry) between the number of apps and the ideal granularity within each category, indicating that ideal granularity increases with category size, as expected. Conclusions: Current categorisation in the app stores studied do not exhibit a good classification quality in terms of the claimed feature space. However, a better quality can be achieved using a good feature extraction technique and a traditional clustering method.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Dept of Computer Science
Dept of Computer Science
Dept of Computer Science
Dept of Computer Science
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by