Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Differential Adulthood Onset mGlu5 Signaling Saves Prefrontal Function in the Fragile X Mouse.
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Martin HGS, Lassalle O, Manzoni OJ
  • Publication date:
  • Journal:
    Cerebral cortex (New York, N.Y. : 1991)
  • Medium:
  • Print ISSN:
  • Language:
  • Addresses:
    Université de Aix-Marseille, UMR S901, Marseille 13009, France.
The final maturation of the prefrontal cortex (PFC) continues into early adulthood and is delayed compared with other forebrain structures. However, how these late onset changes in the PFC relate to neurodevelopment disorders is poorly understood. Fragile X syndrome (FXS) is a prevalent neurogenetic disorder linked to deficits in PFC function. mGlu5 is an important molecular hub in the etiology of FXS. Thus we have examined changes in mGlu5 function in the PFC in a mouse model of FXS (Fmr1 knockout) during early adulthood and subsequent maturity. An unusual endophenotype was identified; during early adulthood (2-month-old) Fmr1 knockout mice show a severe deficit in mGlu5 dependent eCB synaptic plasticity; however, in 1-year-old this deficit self rectifies. This adulthood onset correction in mGlu5 function is linked to an engagement of TRPV1 receptors in 1-year-old mice. In 2-month-old Fmr1 knockout mice, mGlu5 mediated synaptic plasticity could be recovered with eCB system targeted drugs, but also by direct enhancement of mGlu5 function with a positive allosteric modulator. These results point to further refinements to the role of mGlu5 in FXS. Furthermore our findings suggest when studying neurodevelopmental disorders with a significant PFC phenotype consideration of late onset changes may be important.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Clinical & Experimental Epilepsy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by