Please report any queries concerning the funding data grouped in the
sections named
"Externally Awarded"
or
"Internally Disbursed"
(shown on the profile page) to your Research Finance Administrator.
Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php
by entering your department
Please report any queries concerning the student data shown on the
profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Identification of ER-000444793, a Cyclophilin D-independent inhibitor of mitochondrial permeability transition, using a high-throughput screen in cryopreserved mitochondria.
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Briston T, Lewis S, Koglin M, Mistry K, Shen Y, Hartopp N, Katsumata R, Fukumoto H, Duchen MR, Szabadkai G, Staddon JM, Roberts M, Powney B
-
Publication date:25/11/2016
-
Pagination:37798
-
Journal:Sci Rep
-
Volume:6
-
Status:Published
-
Country:England
-
PII:srep37798
-
Language:ENG
-
Author URL:
-
Full Text URL:
Abstract
Growing evidence suggests persistent mitochondrial permeability transition pore (mPTP) opening is a key pathophysiological event in cell death underlying a variety of diseases. While it has long been clear the mPTP is a druggable target, current agents are limited by off-target effects and low therapeutic efficacy. Therefore identification and development of novel inhibitors is necessary. To rapidly screen large compound libraries for novel mPTP modulators, a method was exploited to cryopreserve large batches of functionally active mitochondria from cells and tissues. The cryopreserved mitochondria maintained respiratory coupling and ATP synthesis, Ca(2+) uptake and transmembrane potential. A high-throughput screen (HTS), using an assay of Ca(2+)-induced mitochondrial swelling in the cryopreserved mitochondria identified ER-000444793, a potent inhibitor of mPTP opening. Further evaluation using assays of Ca(2+)-induced membrane depolarisation and Ca(2+) retention capacity also indicated that ER-000444793 acted as an inhibitor of the mPTP. ER-000444793 neither affected cyclophilin D (CypD) enzymatic activity, nor displaced of CsA from CypD protein, suggesting a mechanism independent of CypD inhibition. Here we identified a novel, CypD-independent inhibitor of the mPTP. The screening approach and compound described provides a workflow and additional tool to aid the search for novel mPTP modulators and to help understand its molecular nature.
› More
search options
UCL Researchers