UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
In-Network View Synthesis for Interactive Multiview Video Systems
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Toni L, Cheung G, Frossard P
  • Publication date:
    02/03/2016
  • Pagination:
    852, 864
  • Journal:
    IEEE Transactions on Multimedia
  • Volume:
    18
  • Issue:
    5
  • Status:
    Published
  • Print ISSN:
    1520-9210
Abstract
© 2016 IEEE.In multiview applications, camera views can be used as reference views to synthesize additional virtual viewpoints, allowing users to freely navigate within a 3D scene. However, bandwidth constraints may restrict the number of reference views sent to clients, limiting the quality of the synthesized viewpoints. In this work, we study the problem of in-network reference view synthesis aimed at improving the navigation quality at the clients. We consider a distributed cloud network architecture, where data stored in a main cloud is delivered to end users with the help of cloudlets, i.e., resource-rich proxies close to the users. We argue that, in case of limited bandwidth from the cloudlet to the users, re-sampling at the couldlet the viewpoints of the 3D scene (i.e., synthesizing novel virtual views in the cloudlets to be used as new references to the decoder) is beneficial compared to mere subsampling of the original set of camera views. We therefore cast a new reference view selection problem that seeks the subset of views minimizing the distortion over a view navigation window defined by the user under bandwidth constraints. We prove that the problem is NP-hard, and we propose an effective polynomial time algorithm using dynamic programming to solve the optimization problem under general assumptions that cover most of the multiview scenarios in practice. Simulation results confirm the performance gain offered by virtual view synthesis in the network.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Electronic & Electrical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by