Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Genetic boosting classification for malware detection
In the last few years virus writers have made use of new obfuscation techniques with the aim of hindering malware in order to difficult their detection by Anti-Virus engines. Strategies to reverse this trend involve executing potentially malicious programs and monitor the actions they perform in runtime, what is known as dynamic analysis. In this paper we present a method able to reach a high accuracy rate without using this kind of analysis. Instead we use a static analysis approach, which discards those samples that cannot be classified with enough certainty and need, certainly, a dynamic analysis. The K-means clustering algorithm has been used to group samples into regions according to their features. Then a boosting process, guided by a genetic algorithm, is executed in each region that are evaluated using a test dataset discarding those regions which do not reach a minimum accuracy threshold.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by