UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    McClelland JR, Modat M, Arridge S, Grimes H, D'Souza D, Thomas D, O'Connell D, Low D, Kaza E, Collins D, Leach M, Hawkes D
  • Publisher:
    Institute of Physics
  • Publication date:
    05/05/2017
  • Journal:
    Physics in Medicine and Biology
  • Status:
    Published
  • Country:
    England
  • Print ISSN:
    1361-6560
  • Language:
    eng
  • Keywords:
    CT, Image registration, MR, Motion compensated image reconstruction, Respiratory motion modelling, Respiratory surrogate signals, Super-resolution
Abstract
Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of 'partial' imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by