UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Knowledge Graph Completion via Complex Tensor Factorization
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Trouillon T, Dance CR, Welbl J, Riedel S, Gaussier É, Bouchard G
  • Publisher:
    Microtome Publishing
  • Publication date:
    01/11/2017
  • Pagination:
    1, 38
  • Journal:
    Journal of Machine Learning Research
  • Volume:
    18
  • Issue:
    130
  • Status:
    Published
  • Print ISSN:
    1532-4435
  • Language:
    English
  • Keywords:
    complex embeddings, tensor factorization, knowledge graph, matrix completion, statistical relational learning
Abstract
In statistical relational learning, knowledge graph completion deals with automatically understanding the structure of large knowledge graphs—labeled directed graphs—and predicting missing relationships—labeled edges. State-of-the-art embedding models propose different trade-offs between modeling expressiveness, and time and space complexity. We reconcile both expressiveness and complexity through the use of complex-valued embeddings and explore the link between such complex-valued embeddings and unitary diagonalization. We corroborate our approach theoretically and show that all real square matrices—thus all possible relation/adjacency matrices—are the real part of some unitarily diagonalizable matrix. This results opens the door to a lot of other applications of square matrices factorization. Our approach based on complex embeddings is arguably simple, as it only involves a Hermitian dot product, the complex counterpart of the standard dot product between real vectors, whereas other methods resort to more and more complicated composition functions to increase their expressiveness. The proposed complex embeddings are scalable to large data sets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by