Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A comparison of automated anatomical-behavioural mapping methods in a rodent model of stroke.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Comparative Study
  • Authors:
    Crum WR, Giampietro VP, Smith EJ, Gorenkova N, Stroemer RP, Modo M
  • Publication date:
  • Pagination:
    170, 183
  • Journal:
    J Neurosci Methods
  • Volume:
  • Issue:
  • Status:
  • Country:
  • PII:
  • Language:
  • Keywords:
    Image registration, Magnetic resonance imaging, Stroke, Tensor-based morphometry, Voxel lesion symptom mapping, Animals, Automation, Brain Mapping, Disease Models, Animal, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Rats, Rats, Sprague-Dawley, Stroke
Neurological damage, due to conditions such as stroke, results in a complex pattern of structural changes and significant behavioural dysfunctions; the automated analysis of magnetic resonance imaging (MRI) and discovery of structural-behavioural correlates associated with these disorders remains challenging. Voxel lesion symptom mapping (VLSM) has been used to associate behaviour with lesion location in MRI, but this analysis requires the definition of lesion masks on each subject and does not exploit the rich structural information in the images. Tensor-based morphometry (TBM) has been used to perform voxel-wise structural analyses over the entire brain; however, a combination of lesion hyper-intensities and subtle structural remodelling away from the lesion might confound the interpretation of TBM. In this study, we compared and contrasted these techniques in a rodent model of stroke (n=58) to assess the efficacy of these techniques in a challenging pre-clinical application. The results from the automated techniques were compared using manually derived region-of-interest measures of the lesion, cortex, striatum, ventricle and hippocampus, and considered against model power calculations. The automated TBM techniques successfully detect both lesion and non-lesion effects, consistent with manual measurements. These techniques do not require manual segmentation to the same extent as VLSM and should be considered part of the toolkit for the unbiased analysis of pre-clinical imaging-based studies.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Neurodegenerative Diseases
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by