Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Why the internet is so 'small'?
-
Publication Type:Conference
-
Authors:Zhou S
-
Publication date:01/12/2009
-
Pagination:4, 12
-
Published proceedings:Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
-
Volume:16 LNICST
-
ISBN-10:3642112838
-
ISBN-13:9783642112836
-
Status:Published
-
Print ISSN:1867-8211
Abstract
During the last three decades the Internet has experienced fascinating evolution, both exponential growth in traffic and rapid expansion in topology. The size of the Internet becomes enormous, yet the network is very 'small' in the sense that it is extremely efficient to route data packets across the global Internet. This paper provides a brief review on three fundamental properties of the Internet topology at the autonomous systems (AS) level. Firstly the Internet has a power-law degree distribution, which means the majority of nodes on the Internet AS graph have small numbers of links, whereas a few nodes have very large numbers of links. Secondly the Internet exhibits a property called disas-sortative mixing, which means poorly-connected nodes tend to link with well-connected nodes, and vice versa. Thirdly the best-connected nodes, or the rich nodes, are tightly interconnected with each other forming a rich-club. We explain that it is these structural properties that make the global Internet so 'small'. © Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009.
› More search options
UCL Researchers