Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Improving Risk Adjustment for Mortality After Pediatric Cardiac Surgery: The UK PRAiS2 Model
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Rogers L, Brown KL, Franklin RC, Ambler G, Anderson D, Barron DJ, Crowe S, English K, Stickley J, Tibby S, Tsang V, Utley M, Witter T, Pagel C
-
Publication date:18/03/2017
-
Journal:Annals of Thoracic Surgery
-
Status:Accepted
-
Print ISSN:0003-4975
Abstract
© 2017 The Authors.Background: Partial Risk Adjustment in Surgery (PRAiS), a risk model for 30-day mortality after children's heart surgery, has been used by the UK National Congenital Heart Disease Audit to report expected risk-adjusted survival since 2013. This study aimed to improve the model by incorporating additional comorbidity and diagnostic information. Methods: The model development dataset was all procedures performed between 2009 and 2014 in all UK and Ireland congenital cardiac centers. The outcome measure was death within each 30-day surgical episode. Model development followed an iterative process of clinical discussion and development and assessment of models using logistic regression under 25 × 5 cross-validation. Performance was measured using Akaike information criterion, the area under the receiver-operating characteristic curve (AUC), and calibration. The final model was assessed in an external 2014 to 2015 validation dataset. Results: The development dataset comprised 21,838 30-day surgical episodes, with 539 deaths (mortality, 2.5%). The validation dataset comprised 4,207 episodes, with 97 deaths (mortality, 2.3%). The updated risk model included 15 procedural, 11 diagnostic, and 4 comorbidity groupings, and nonlinear functions of age and weight. Performance under cross-validation was: median AUC of 0.83 (range, 0.82 to 0.83), median calibration slope and intercept of 0.92 (range, 0.64 to 1.25) and -0.23 (range, -1.08 to 0.85) respectively. In the validation dataset, the AUC was 0.86 (95% confidence interval [CI], 0.82 to 0.89), and the calibration slope and intercept were 1.01 (95% CI, 0.83 to 1.18) and 0.11 (95% CI, -0.45 to 0.67), respectively, showing excellent performance. Conclusions: A more sophisticated PRAiS2 risk model for UK use was developed with additional comorbidity and diagnostic information, alongside age and weight as nonlinear variables.
› More search options
UCL Researchers
Show More