UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals
Abstract
In this article we develop a new sequential Monte Carlo (SMC) method for multilevel (ML) Monte Carlo estimation. In particular, the method can be used to estimate expectations with respect to a target probability distribution over an infinite-dimensional and non-compact space as given, for example, by a Bayesian inverse problem with Gaussian random field prior. Under suitable assumptions the MLSMC method has the optimal $O(\epsilon^{-2})$ bound on the cost to obtain a mean-square error of $O(\epsilon^2)$. The algorithm is accelerated by dimension-independent likelihood-informed (DILI) proposals designed for Gaussian priors, leveraging a novel variation which uses empirical sample covariance information in lieu of Hessian information, hence eliminating the requirement for gradient evaluations. The efficiency of the algorithm is illustrated on two examples: inversion of noisy pressure measurements in a PDE model of Darcy flow to recover the posterior distribution of the permeability field, and inversion of noisy measurements of the solution of an SDE to recover the posterior path measure.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Statistical Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by