UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Estimation and uncertainty quantification of optical properties directly from the photoacoustic time series
Abstract
© 2017 SPIE. Quantitative photoacoustic tomography seeks to estimate the optical parameters of a target given photoacoustic measurements as a data. Conventionally the problem is split into two steps: 1) the acoustical inverse problem of estimating the acoustic initial pressure distribution from the acoustical time series data; 2) the optical inverse problem of estimating the optical absorption and scattering from the initial pressure distributions. In this work, an approach for estimating the optical absorption and scattering directly from the acoustical time series is investigated with simulations. The work combines a homogeneous acoustical forward model, based on the Green's function solution of the wave equation, and a finite element method based diffusion approximation model of light propagation into a single forward model. This model maps the optical parameters of interest into a time domain signal. The model is used with a Bayesian approach to ill-posed inverse problems to form estimates of the posterior distributions for the parameters of interest. In addition to being able to provide point estimates of the parameters of interest, i.e. reconstruct the absorption and scattering distributions, the approach can be used to derive information on the uncertainty associated with the estimates.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by