UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A comparative study of breast surface reconstruction for aesthetic outcome assessment
  • Publication Type:
    Conference
  • Authors:
    Lacher RM, Vasconcelos , Bishop , Williams , Keshtgar , Hawkes , Hipwell , Stoyanov
  • Publication date:
    10/09/2017
  • Published proceedings:
    MICCAI2017
  • Name of conference:
    20th International Conference on Medical Image Computing and Computer Assisted Intervention 2017
  • Conference place:
    Quebec City, Quebec, Canada
  • Conference start date:
    10/09/2017
  • Conference finish date:
    14/09/2017
Abstract
Breast cancer is the most prevalent cancer type in women, and while its survival rate is generally high the aesthetic outcome is an increasingly important factor when evaluating different treatment alternatives. 3D scanning and reconstruction techniques offer a flexible tool for building detailed and accurate 3D breast models that can be used both pre-operatively for surgical planning and post-operatively for aesthetic evaluation. This paper aims at comparing the accuracy of low-cost 3D scanning technologies with the significantly more expensive state-of-the-art 3D commercial scanners in the context of breast 3D reconstruction. We present results from 28 synthetic and clinical RGBD sequences, including 12 unique patients and an anthropomorphic phantom demonstrating the applicability of low-cost RGBD sensors to real clinical cases. Body deformation and homogeneous skin texture pose challenges to the studied reconstruction systems. Although these should be addressed appropriately if higher model quality is warranted, we observe that low-cost sensors are able to obtain valuable reconstructions comparable to the state-of-the-art within an error margin of 3 mm.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by