UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Tweetsemminer: A meta-topic identification model for twitter using semantic analysis
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Menéndez HD, Delgado-Calle C, Camacho D
  • Publication date:
    01/01/2014
  • Pagination:
    69, 76
  • Journal:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
    8669
  • Status:
    Published
  • Print ISSN:
    0302-9743
Abstract
© Springer International Publishing Switzerland 2014. The information contained in Social Networks has become increasingly important over the last few years. Inside this field, Twitter is one of the main current information sources, produced by the comments and contents that their users interchange. This information is usually noisy, however, there are some hidden patterns that can be extracted such as trends, opinions, sentiments, etc. These patterns are useful to generate users communities, which can be focused, for example, on marketing campaigns. Nevertheless, the identification process is usually blind, difficulting this information extaction. Based on this idea, this work pretends to extract relevant data from Twitter. In order to achieve this goal, we have desgined a system, called TweetSemMiner, to classify user comments (or tweets) using general topics (or meta-topics). There are several works devoted to analize social networks, however, only Topic Detection techniques have been applied in this context. This paper provides a new approach to the problem of classification using semantic analysis. The system has been developed focused on the detection of a single meta-topic and uses techniques such as Latent Semantic Analysis (LSA) combined with semantic queries in DBpedia, in order to obtain some results which can be used to analyze the effectiveness of the model. We have tested the model using real users, whose comments were subsequently evaluated to check the effectiveness of this approach.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by