Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Regulation of retinal pigment epithelial cell phenotype by Annexin A8.
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Lueck K, Carr A-JF, Stampoulis D, Gerke V, Rescher U, Greenwood J, Moss SE
  • Publication date:
  • Pagination:
  • Journal:
    Scientific reports
  • Volume:
  • Issue:
  • Medium:
  • Print ISSN:
  • Language:
  • Addresses:
    Department of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, United Kingdom. k.lueck@ucl.ac.uk.
The retinoic acid derivative fenretinide (FR) is capable of transdifferentiating cultured retinal pigment epithelial (RPE) cells towards a neuronal-like phenotype, but the underlying mechanisms are not understood. To identify genes involved in this process we performed a microarray analysis of RPE cells pre- and post-FR treatment, and observed a marked down-regulation of AnnexinA8 (AnxA8) in transdifferentiated cells. To determine whether AnxA8 plays a role in maintaining RPE cell phenotype we directly manipulated AnxA8 expression in cultured and primary RPE cells using siRNA-mediated gene suppression, and over-expression of AnxA8-GFP in conjunction with exposure to FR. Treatment of RPE cells with AnxA8 siRNA recapitulated exposure to FR, with cell cycle arrest, neuronal transdifferentiation, and concomitant up-regulation of the neuronal markers calretinin and calbindin, as assessed by real-time PCR and immunofluorescence. In contrast, AnxA8 transient over-expression in ARPE-19 cells prevented FR-induced differentiation. Ectopic expression of AnxA8 in AnxA8-depleted cells led to decreased neuronal marker staining, and normal cell growth as judged by phosphohistone H3 staining, cell counting and cleaved caspase-3 levels. These data show that down-regulation of AnxA8 is both necessary and sufficient for neuronal transdifferentiation of RPE cells and reveal an essential role for AnxA8 as a key regulator of RPE phenotype.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Institute of Ophthalmology
Institute of Ophthalmology
Institute of Ophthalmology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by